计算机网络编程

"network coding"

Posted by yueLng on 2018-03-16

基本概念

用户空间与内核空间

现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。针对linux操作系统而言,将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF),供各个进程使用,称为用户空间。

进程切换

为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换

  1. 保存处理机上下文,包括程序计数器和其他寄存器。
  2. 更新PCB信息。
  3. 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。
  4. 选择另一个进程执行,并更新其PCB。
  5. 更新内存管理的数据结构。
  6. 恢复处理机上下文。

进程的阻塞

正在执行的进程,由于期待的某些事件未发生,如请求系统资源失败、等待某种操作的完成、新数据尚未到达或无新工作做等,则由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞状态。可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得CPU),才可能将其转为阻塞状态。当进程进入阻塞状态,是不占用CPU资源的。

文件描述符fd

文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。

缓存I/O

缓存 I/O 又被称作标准 I/O,大多数文件系统的默认 I/O 操作都是缓存 I/O。在 Linux 的缓存 I/O 机制中,操作系统会将 I/O 的数据缓存在文件系统的页缓存( page cache )中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。

数据在传输过程中需要在应用程序地址空间和内核进行多次数据拷贝操作,这些数据拷贝操作所带来的 CPU 以及内存开销是非常大的。

IO模型

刚才说了,对于一次IO访问(以read举例),数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。所以说,当一个read操作发生时,它会经历两个阶段:

  1. 等待数据准备 (Waiting for the data to be ready)
  2. 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

正式因为这两个阶段,linux系统产生了下面五种网络模式的方案。

  • 阻塞 I/O(blocking IO)
  • 非阻塞 I/O(nonblocking IO)
  • I/O 多路复用( IO multiplexing)
  • 信号驱动 I/O( signal driven IO)少用
  • 异步 I/O(asynchronous IO)

阻塞 I/O(blocking IO)


blocking IO的特点是在IO执行的两个阶段都被block了

非阻塞I/O (nonblocking IO)


nonblocking IO的特点是用户进程需要不断的主动询问kernel数据好了没有。

I/O 多路复用( IO multiplexing)


当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪状态,select()函数就可以返回。

异步 I/O(asynchronous IO)


用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

I/O模型之间的区别


阻塞与非阻塞:调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。
synchronous IO和asynchronous IO:这里说的IO operation是指真正的IO操作,non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。

而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

redis网络模型

redis的网络模型是单线程EPOLL模型,利用I/O多路复用技术,监听感兴趣的I/O事件。
单线程的好处有:

  1. 避免线程切换带来的上下文切换开销。
  2. 单线程避免了锁的争用。
  3. 对于一个内存型数据库,如果不考虑数据持久化,也就是读写物理磁盘,不会有阻塞操作,内存操作是非常快的。

它的处理过程如图所示:

参考资料

Linux IO模式及 select、poll、epoll详解
Redis 源码日志-极客学院
Redis网络库源码分析(1)之介绍篇